

resilient seismic solutions

Timber Wall Cost Study

Timber Walls

- The number of mass timber buildings is forecasted to double very year through to 2034.
- Most timber buildings are built using steel or concrete lateral systems.
- All-timber lateral systems are easily achievable using Tectonus seismic devices on timber walls or timber braces.
- Clients and designers need to understand the cost implications.

Cost Study

Objective:

- Explore impact of Tectonus devices as hold-downs for shear walls on cost and seismic performance.
- Two configurations of the same mass timber building are compared:
 - 1. Conventional Building with CLT shear walls and semi-rigid hold downs.
 - 2. <u>Tectonus Building</u> with CLT shear walls and Tectonus hold downs.

Note: all costs are given in New Zealand Dollars (times 0.6 for USD)

Introduction

The Building

- Rectangular plan with dimensions: 78m (longitudinal) x 30m (transverse).
- Thirteen bays in longitudinal (X) direction and five bays in transverse (Y) direction.
- Comprises 3 levels with a total height of 9.3m.
- Located in Wellington on Site soil Class D.
- Typical building classified as Importance Level 2 (IL2) per NZS1170.5.

Seismic Assessment Method

- Seismic performance using NZSEE guidelines (similar to FEMA 356).
- Utilizes Nonlinear Static Pushover Analysis and capacity spectrum method.

Building Models

Tectonus Devices

Tectonus devices implemented as shear wall hold-downs

Figure 3. Tectonus Building with Tectonus shear wall hold-downs

Technology Benefits

As well as reducing post-quake damage and downtime, Tectonus saves on construction costs by reducing demand on superstructure and foundations.

Technology features:

- Increased damping and ductility up to 3X
- Best in class capacity design factor (1.35) applied to adjacent members

Construction benefits:

- Removal of entire walls and brace bays
- Reduced member sizes e.g. braces, columns, beams
- Reduced pile depth and/or pad thickness

Seismic Analysis

• Ductility of 3.8+ is achieved in Tectonus Building cf. 2.0 in Conventional.

Figure 4: Force displacement curve for the two buildings in consideration

RESULTS							
Load Pattern	Direction	Ductility in Force Terms (µ)	Base Shear (kN)				
Conventional Building	X Y	2.0	10580				
Tectonus Building	x	4.0	5989				
	Y	3.8	6386				

Shear Wall Volume

• >47% reduction in shear wall volume in Tectonus Building cf. Conventional.

Case Study Schematics	Longitudinal Direction (X-Direction)					
	No. of Wall	Length (m)	Height (m)	Thickness (m)	Volume (m³)	
Conventional Building (µ=2.0)	4	35.6	9.3	0.126	167	
Building with Tectonus Hold-downs	12	5.6	9.3	0.126	79	
		Reduction in Wall Volume:			<u>47%</u>	

	Transverse Direction (Y-Direction)				
Case Study Schematics	No. of Wall	Length (m)	Height (m)	Thickness (m)	Volume (m³)
Conventional Building (µ=2.0)	12	11.6	9.3	0.126	163
Building with Tectonus Hold-downs	12	5.6	9.3	0.126	79
		Reduction in Wall Volume:			<u>48%</u>

Fasteners

Conventional Shear Wall

- 71% reduction in number of fasteners cf. Conventional
- Note connection cost assumed to be equivalent

No. of fasteners

Cost Comparison

• Tectonus cost is paid back by savings in timber and connectors alone.

Other Costs

Foundations

- Base shear is reduced more than 40% in Tectonus Building cf. Conventional
- Additional savings \$50,000 to \$200,000 depending on multiple factors.

Transportation

- Fewer shear walls transported to site
- Additional savings depending on distance travelled

Installation

- Fewer shear walls results in additional savings
- Tectonus devices are bolted in place simple and fast

Engineering

- Detailing costs are assumed to be equivalent
- Cost of alternative design and peer review with Tectonus ~\$50,000

Conclusion

- · Case study demonstrates the cost saving potential of Tectonus devices
- Tectonus cost is paid back by the savings in timber and connectors
- Additional savings expected in transport, installation and foundations
- Seismic performance is greatly improved ductility increased 2X
- In the event of an earthquake, the building will experience little damage and be available for re-occupancy almost immediately.

For more information:

- → Visit <u>www.tectonus.com</u>
- \rightarrow Contact us for a no obligation consultation <u>info@tectonus.com</u>

